Securing Circuits and Protocols against 1/poly(k) Tampering Rate

نویسندگان

  • Dana Dachman-Soled
  • Yael Tauman Kalai
چکیده

In this work we present an efficient compiler that converts any circuitC into one that is resilient to tampering with 1/ poly(k) fraction of the wires, where k is a security parameter independent of the size of the original circuit |C|. Our tampering model is similar to the one proposed by Ishai et al. (Eurocrypt, 2006) where a tampering adversary may tamper with any wire in the circuit (as long as the overall number of tampered wires is bounded), by setting it to 0 or 1, or by toggling with it. Our result improves upon that of Ishai et al. which only allowed the adversary to tamper with 1/|C| fraction of the wires. Our result is built on a recent result of Dachman-Soled and Kalai (Crypto, 2012), who constructed tamper resilient circuits in this model, tolerating a constant tampering rate. However, their tampering adversary may learn logarithmically many bits of sensitive information. In this work, we avoid this leakage of sensitive information, while still allowing leakage rate that is independent of the circuit size. We mention that the result of Dachman-Soled and Kalai (Crypto, 2012) is only for Boolean circuits (that output a single bit), and for circuits that output k bits, their tampering-rate becomes 1/O(k). Thus for cryptographic circuits (that output k bits), our result strictly improves over (Dachman-Soled and Kalai, Crypto,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Securing Circuits against Constant-Rate Tampering

We present a compiler that converts any circuit into one that remains secure even if a constant fraction of its wires are tampered with. Following the seminal work of Ishai et al. (Eurocrypt 2006), we consider adversaries who may choose an arbitrary set of wires to corrupt, and may set each such wire to 0 or to 1, or may toggle with the wire. We prove that such adversaries, who continuously tam...

متن کامل

Tamper Resilient Circuits: The Adversary at the Gates

We initiate the investigation of gate-tampering attacks against cryptographic circuits. Our model is motivated by the plausibility of tampering directly with circuit gates and by the increasing use of tamper resilient gates among the known constructions that are shown to be resilient against wiretampering adversaries. We prove that gate-tampering is strictly stronger than wire-tampering. On the...

متن کامل

Explicit Optimal-Rate Non-malleable Codes Against Bit-wise Tampering and Permutations

A non-malleable code protects messages against various classes of tampering. Informally, a code is non-malleable if the effect of applying any tampering function on an encoded message is to either retain the message or to replace it with an unrelated message. Two main challenges in this area – apart from establishing the feasibility against different families of tampering – are to obtain explic...

متن کامل

A Rate-Optimizing Compiler for Non-malleable Codes Against Bit-Wise Tampering and Permutations

A non-malleable code protects messages against a class of tampering functions. Informally, a code is non-malleable if the effect of applying any tampering function on an encoded message is to either retain the message or to replace it with an unrelated message. Two main challenges in this area – apart from establishing the feasibility against different families of tampering – are to obtain expl...

متن کامل

Explicit Non-Malleable Codes Resistant to Permutations

The notion of non-malleable codes was introduced as a relaxation of standard error-correction and error-detection. Informally, a code is non-malleable if the message contained in a modified codeword is either the original message, or a completely unrelated value. In the information theoretic setting, although existence of such codes for various rich classes of tampering functions is known, expl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014